skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Plehn, Tilman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A comprehensive uncertainty estimation is vital for the precision program of the LHC. While experimental uncertainties are often described by stochastic processes and well-defined nuisance parameters, theoretical uncertainties lack such a description. We study uncertainty estimates for cross-section predictions based on scale variations across a large set of processes. We find patterns similar to a stochastic origin, with accurate uncertainties for processes mediated by the strong force, but a systematic underestimate for electroweak processes. We propose an improved scheme, based on the scale variation of reference processes, which reduces outliers in the mapping from leading order to next-to-leading-order in perturbation theory. 
    more » « less
  2. Typical LHC analyses search for local features in kinematicdistributions. Assumptions about anomalous patterns limit them to arelatively narrow subset of possible signals. Wavelets extractinformation from an entire distribution and decompose it at all scales,simultaneously searching for features over a wide range of scales. Wepropose a systematic wavelet analysis and show how bumps, bump-dipcombinations, and oscillatory patterns are extracted. Our kinematicwavelet analysis kit KWAK provides a publicly available framework toanalyze and visualize general distributions. 
    more » « less
  3. Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program. 
    more » « less
  4. We estimate the reach of global Higgs analyses at a 27 TeV hadroncollider in terms of Higgs couplings and in terms of a gauge-invarianteffective Lagrangian, including invisible Higgs decays and the Higgsself-coupling. The new collider will indirectly probe new physics in theTeV range and allow for a meaningful test of the Higgs self-couplingalso embedded in a global analysis. 
    more » « less
  5. First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem. 
    more » « less
  6. Abstract In this work, we consider the case of a strongly coupled dark/hidden sector, which extends the Standard Model (SM) by adding an additional non-Abelian gauge group. These extensions generally contain matter fields, much like the SM quarks, and gauge fields similar to the SM gluons. We focus on the exploration of such sectors where the dark particles are produced at the LHC through a portal and undergo rapid hadronization within the dark sector before decaying back, at least in part and potentially with sizeable lifetimes, to SM particles, giving a range of possibly spectacular signatures such as emerging or semi-visible jets. Other, non-QCD-like scenarios leading to soft unclustered energy patterns or glueballs are also discussed. After a review of the theory, existing benchmarks and constraints, this work addresses how to build consistent benchmarks from the underlying physical parameters and present new developments for the pythia Hidden Valley module, along with jet substructure studies. Finally, a series of improved search strategies is presented in order to pave the way for a better exploration of the dark showers at the LHC. 
    more » « less
  7. Based on the established task of identifying boosted, hadronicallydecaying top quarks, we compare a wide range of modern machine learningapproaches. Unlike most established methods they rely on low-levelinput, for instance calorimeter output. While their networkarchitectures are vastly different, their performance is comparativelysimilar. In general, we find that these new approaches are extremelypowerful and great fun. 
    more » « less